今天给各位分享高一年级必修五数学知识点整理的知识,其中也会对高一年级必修五数学知识点整理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文导读目录:

1、高一年级必修五数学知识点(通用7篇)

2、高一年级必修五数学知识点【优秀6篇】

3、高一年级必修五数学知识点整理

  高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定学习计划,养成自主学习的好习惯。下面是白话文整理的高一年级必修五数学知识点(通用7篇),您的肯定与分享是对小编最大的鼓励。   ⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=   也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处。因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论。   ⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=。   ⑶若S是以q为公比的等比数列,则有S=S+qS.⑵   ⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列。   ⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列   万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)   cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)   1、不等式的定义   在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。   2、比较两个实数的大小   两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba   3、不等式的性质   (1)对称性:ab   (2)传递性:ab,ba   (3)可加性:aa+cb+c,ab,ca+c   (4)可乘性:ab,cacb0,c0bd;   (5)可乘方:a0bn(nN,n   (6)可开方:a0   (nN,n2)。   注意:   一个技巧   作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。   一种方法   待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。   函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:   (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。   (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。   (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。   (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。   (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。   (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。   (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。   (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。   ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件   ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用   ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用   ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用   ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用   ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用   幂函数   定义   形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。   定义域和值域   当a为不同的数值时,幂函数的定义域的不同情况如下:   如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域   性质   对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   1.多面体的结构特征   (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。   正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。   (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。   正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。   (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。   2.旋转体的结构特征   (1)圆柱可以由矩形绕一边所在直线旋转一周得到。   (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。   (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。   (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。   3.空间几何体的三视图   空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。   三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。   4.空间几何体的直观图   空间几何体的直观图常用斜二测画法来画,基本步骤是:   (1)画几何体的底面   在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。   (2)画几何体的高   在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。   求函数的解析式一般有四种情况   (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。   (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。   (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。   (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。  所有的人都是凡人,但所有的人都不甘于平庸。我们一定要相信自己,只要艰苦努力,奋发进取,在绝望中也能寻找到希望,平凡的人生终将会发出耀眼的光芒。这里的6篇高一年级必修五数学知识点是山草香小编为您分享的高一数学必修5的相关范文,欢迎查看参考。   函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:   (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。   (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。   (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。   (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。   (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。   (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。   (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。   (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。   指数函数   (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。   (2)指数函数的值域为大于0的实数集合。   (3)函数图形都是下凹的。   (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。   (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。   (6)函数总是在某一个方向上无限趋向于X轴,永不相交。   (7)函数总是通过(0,1)这点。   (8)显然指数函数无XX。   奇偶性   定义   一般地,对于函数f(x)   (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。   (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。   (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。   (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。   概率性质与公式   (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);   (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);   (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);   (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,   贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;   如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。   (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。   幂函数   定义   形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。   定义域和值域   当a为不同的数值时,幂函数的定义域的不同情况如下:   如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域   性质   对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   1、空间几何体公式知识点直棱柱和正棱锥的表面积   设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:   S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、   正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、   如果设它的底面边长为a、底面周长为c、斜高为h、则得到正n棱锥的侧面积计算公式   S=1/2*nah'=1/2*ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、   2、空间几何体公式知识点正棱台的表面积   正棱台的侧面展开图是一些全等的等腰梯形、   设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式:S=1/2*n(a+a')h'=1/2(c+c')h'、   3、空间几何体公式知识点球的表面积   S=4πR2、即球面面积等于它的大圆面积的四倍、   4.空间几何体公式知识点圆台的表面积   圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即   S=π(r'2+r2+r'l+rl)   空间几何体公式知识点空间几何体体积计算公式   1、长方体体积   V=abc=Sh   2、柱体体积   所有柱体   V=Sh、即柱体的体积等于它的底面积S和高h的积、   圆柱   V=πr2h、   3、棱锥   V=1/3*Sh   4、圆锥   V=1/3*πr2h   5、棱台V=1/3*h(S+(√SS')+S')   6、圆台   V=1/3*πh(r2+rr'+r'2)   7、球   V=4/3*πR3   求函数的解析式一般有四种情况   (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。   (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。   (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。   (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。   熟读唐诗三百首,不会做诗也会吟。山草香为大家分享的6篇高一年级必修五数学知识点就到这里了,希望在高一数学必修5的写作方面给予您相应的帮助。  【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。®无忧考网为各位同学整理了《高一年级必修五数学知识点整理》,希望对您的学习有所帮助!   1.高一年级必修五数学知识点整理   直线与方程   (1)直线的倾斜角   定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α   (2)直线的斜率   ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。   ②过两点的直线的斜率公式:   注意下面四点:   (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;   (2)k与P1、P2的顺序无关;   (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;   (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。   2.高一年级必修五数学知识点整理   直线和平面垂直   直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。   直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。   直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。   直线和平面平行——没有公共点   直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。   直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。   直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。   3.高一年级必修五数学知识点整理   等比数列性质   (1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;   (2)在等比数列中,依次每k项之和仍成等比数列。   (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}   (4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。   记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1   另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。   (5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)   (6)任意两项am,an的关系为an=am·q’(n—m)   (7)在等比数列中,首项a1与公比q都不为零。   注意:上述公式中a’n表示a的n次方。   4.高一年级必修五数学知识点整理   函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:   (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.   (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.   (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.   (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.   (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.   (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.   (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.   (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.   5.高一年级必修五数学知识点整理   映射、函数、反函数   1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.   2、对于函数的概念,应注意如下几点:   (1)掌握构成函数的三要素,会判断两个函数是否为同一函数.   (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.   (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.   3、求函数y=f(x)的反函数的一般步骤:   (1)确定原函数的值域,也就是反函数的定义域;   (2)由y=f(x)的解析式求出x=f-1(y);   (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.   注意   ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.   ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.   6.高一年级必修五数学知识点整理   1.多面体的结构特征   (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。   正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。   (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。   正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。   (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。   2.旋转体的结构特征   (1)圆柱可以由矩形绕一边所在直线旋转一周得到.   (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.   (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。   (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。   3.空间几何体的三视图   空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。   三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。   4.空间几何体的直观图   空间几何体的直观图常用斜二测画法来画,基本步骤是:   (1)画几何体的底面   在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。   (2)画几何体的高   在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。
高一年级必修五数学知识点整理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一年级必修五数学知识点整理高一年级必修五数学知识点整理的信息别忘了在本站进行查找喔。

未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处

原文地址:http://www.schinda.com.cn/post/1536.html发布于:2025-11-15